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Linear pattern dynamics in nonlinear threshold systems

John B. Rundle
Department of Physics and Colorado Center for Chaos and Complexity and Cooperative Institute for Research in Environme

Sciences, University of Colorado, Boulder, Colorado 80309

W. Klein
Department of Physics and Center for Computational Science, Boston University, Boston, Massachusetts 02215

Kristy Tiampo and Susanna Gross
Colorado Center for Chaos and Complexity, Cooperative Institute for Research in Environmental Sciences, University of Colo

Boulder, Colorado 80309
~Received 15 July 1999!

Complex nonlinear threshold systems frequently show space-time behavior that is difficult to interpret. We
describe a technique based upon a Karhunen-Loeve expansion that allows dynamical patterns to be understood
as eigenstates of suitably constructed correlation operators. The evolution of space-time patterns can then be
viewed in terms of a ‘‘pattern dynamics’’ that can be obtained directly from observable data. As an example,
we apply our methods to a particular threshold system to forecast the evolution of patterns of observed activity.
Finally, we perform statistical tests to measure the quality of the forecasts.
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I. INTRODUCTION

Driven nonlinear threshold system are comprised of in
acting spatial networks of statistically identical, nonline
units or cells that are subjected to a persistent driving fo
or current. A cell ‘‘fires’’ or ‘‘fails’’ when the force, electri-
cal potential, or other physical variables(x,t) on a cell at
position x and time t reaches a predefined force thresho
sF. The result is an increase in an internal state varia
s(x,t) of the cell, as well as a decrease in the force or
tential sustained by the cell to a residual valuesR. Thresh-
olds, residual stresses, and internal states may be modifie
the presence of quenched disorder. The dynamics may
be modified by the presence of noise or annealed disor
Interactions between cells may be excitatory~positive! in the
sense that failure of connected neighbors brings a cell cl
to firing or inhibiting ~negative! in the opposite case. Ex
amples of such systems include earthquakes@1–3#, neural
networks @4,5#, depinning transitions in charge-densi
waves and superconductors@6#, magnetized domains in fer
romagnets@7#, sandpiles@8#, and foams@9#. Numerical simu-
lations of these systems reveal spatial and temporal patt
of firings C(x,t) that are richly complex and difficult to
understand from any deterministic point of view@10#. Un-
derstanding such patterns will increase our understandin
the physics of the systems themselves, since these space
patterns are emergent processes that reflect the struct
dynamics, and properties of the underlying high-dimensio
nonlinear system.

In a number of these driven threshold systems, there
ists the further difficulty that the deterministic dynamics, t
gether with values of the state variabless(x,t), are often
unknown or unobservable. However, the associated firing
tivity pattern variablesC(x,t) are easily observable. It is
important to note here that the space-time patterns in fi
activity C(x,t) should not be confused with space-time p
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terns displayed by the variables in which the underlying d
namics is formulated,s(x,t) and s(x,t). These latter vari-
ables can also be expected to display patterns
correlations, from which the patterns in firing activit
C(x,t) ultimately arise. However, patterns ins(x,t) and
s(x,t) are not of interest to us here, since in the systems
consider they are effectively not observable.

The firing activityC(x,t) can be represented as a set
time series at all positionsx, with C(x,t) defined by
C(x,t)51 if a firing event occurs between$t,t1Dt%;
C(x,t)50 otherwise. The basic problem is illustrated in F
1. The state variables(x,t) at positionx and timet evolves
to a values(x,t1Dt) under the action of the deterministi
dynamicsDt :

Dt$s~x,t !%→s~x,t1Dt !. ~1!

FIG. 1. Schematic diagram of threshold systems, including
observable state variabless(x,t) and observable pattern variable
C(x,t).
2418 ©2000 The American Physical Society
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PRE 61 2419LINEAR PATTERN DYNAMICS IN NONLINEAR . . .
The force or potentials(x,t) associated withs(x,t) also
evolves tos(x,t1Dt).

The values ofs(x,t) ands(x,t), together with details of
the dynamicsDt , are usually hidden from view, below th
horizontal dashed line in Fig. 1. For example, it is not po
sible to have simultaneous knowledge of all the cellular
tentials of all neurons in a living brain at all timest, nor is it
known what dynamical details govern the temporal evolut
of the potentials and currents in all cells. Another example
the stress and strain at every point within the earth al
active earthquake fault systems. There exists no mean
present to observe values for these variables everywhe
time t, as would be needed to understand details of the
namical processes that lead to earthquakes. While model
such dynamics exist, it is not clear how accurately th
represent reality, since they have not been demonstrate
be useful in reliable earthquake forecasting.

By contrast, examples of observable ‘‘firing’’ activity in
clude the firing patterns in groups of neural cells@11–14#,
which can be measured via remotely sensed electrical ne
probes, as well as earthquakes, which can be located in s
and time to reasonable precision using seismographs@15–
17#. Since bothC(x,t) and C(x,t1Dt) are observable, it
might be possible in principle to learn aboutDt , s(x,t), and
s(x,t) by studying the evolution of patterns. Unfortunate
there exists no evidence at present thatC(x,t) is uniquely
related tos(x,t) ands(x,t). In other words, there may be
large number of statess(x,t) that produce a similar patter
C(x,t), or a large number of patternsC(x,t) associated
with similar statess(x,t). This weak association betwee
s(x,t) andC(x,t) is represented schematically in Fig. 1 by
vertical dotted line.

In attempting to forecast the future evolution of drive
threshold systems, the most common approach is to~1! use
observations ofC(x,t) to infer s(x,t); then ~2! uses(x,t)
together with an assumed model for the dynamicsDt to cal-
culate s(x,t1Dt); and finally ~3! use s(x,t1Dt) to infer
C(x,t1Dt), which represents the observable pattern of
terest. However, this method involves a long chain of inf
ence and assumption, particular links of which may not
well justified. In an alternative approach, we propose
construction of an approximate dynamics based
Karhunen-Loeve~KL ! methods that associate a future p
tern stateC(x,t1Dt) with an earlier pattern stateC(x,t) by
means of an assumed ‘‘pattern dynamics’’ operatorP(Dt):

P~Dt!$C~x,t !%⇒C~x,t1Dt !. ~2!

Moreover, we propose to constructP(Dt) without any
knowledge of the true deterministic dynamicsDt , using only
knowledge of the pattern states precedingC(x,t).

The pattern dynamics operator that we construct oper
on a space of functionsCR(x,t) that we call ‘‘reconstructed
pattern states.’’ TheCR(x,t) are continuous in time and rep
resent approximations, in the sense described below, to
pattern statesC(x,t). In fact, theCR(x,t) will be seen to
represent probability amplitudes from which probability de
sity functions for firing activity may be calculated. In con
trast to the underlying deterministic dynamicsDt , which are
most probably strongly nonlinear, the operatorP(Dt) is as-
sumed to be linear over small time intervalsDt. A conve-
-
-

n
is
g
at
at

y-
for
e
to

ral
ce

-
-
e
e
n
-

es

he

-

nient analogy for the relationship betweenP(Dt) andDt is
the correspondence between an equilibrium dynamical
tem, such as an Ising model that is governed by a nonlin
Langevin equation and the corresponding functional Fokk
Planck equation@18,19#. Evolution of dynamical variables
such as the spin density, is governed by a strongly nonlin
Langevin equation, but the probability density functio
evolve according to a linear functional Fokker-Planck eq
tion.

The assumption of a linear dynamics governing t
CR(x,t) follows from the statistical time-stationary prope
ties of the underlying dynamics, which in turn justifies th
use of methods based upon a Karhunen-Loeve expans
We have shown in previous work@20–22# that mean-field
threshold systems, characterized by long-range interact
between sitesx andx8, can be treated as equilibrium system
and have dynamics that are statistically stationary over l
time intervals. These long intervals are eventually punc
ated by rare, large events that serve to reorder the en
system. As the range of interaction increases, these equ
riumlike time intervals increase. In the limit of infinite rang
interactions where mean-field conditions hold and the sys
is ergodic, Poincare´’s theorem@23# implies that dynamical
variables can be written as sums and integrals of comp
exponentials. In the work described here, we will construc
pattern dynamics for these mean-field systems.

Our approach is similar in some respects to previous o
that use correlation methods@10,25,26#, but also has impor-
tant differences. In most of these methods, a formalism
constructed that in effect uses space-time patterns to extr
late future system behavior. However, our approach diff
in that we retrieve a complete set of space-time patterns
resented by the eigenvectorsfn(xi) and eigenfrequenciesvn
of an equal time, rate-rate correlation function. Thefn(xi)
provide information about spatial correlations of patter
whereas thevn provide information regarding how ofte
each spatial correlation~eigenvector! is represented in the
observed data. If the process is statistically stationary, as
have established for the mean-field threshold systems
consider, thesefn(xi) and vn will themselves be indepen
dent of time. Hencefn(xi) andvn can justifiably be deter-
mined from an equal time correlation operator. From the
eigenvectors and eigenfrequencies, as well as initial-va
data on the most recent ‘‘firing’’ activity at each spatial l
cation, we obtain the reconstructed pattern stateCR(x,t),
which in turn is used to compute a probability density fun
tion P(x,t).

Forecasting the future evolution of other nonlinear s
tems, such as climate, weather, or El Nino–southern osc
tions, often involves the computation of an unequal time c
relation function~UTC! over short time intervals@26–33#.
However, in these systems, which are not ‘‘threshold s
tems’’ in the sense we consider here, the state varia
s(x,t) and force variabless(x,t) that define the true deter
ministic dynamicscan be directly observed. These includ
wind speeds, temperatures, pressures, and so forth. The
namics, as represented by the Navier-Stokes equation
essentially known. In the case of earthquakes howeve
would not be useful to construct a UTC operator for the st
variabless(x,t) and s(x,t), since the corresponding fiel
variables~stresses and displacements on faults! are effec-
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FIG. 2. ~Top! time-distance plot of simulated seismic activity.N580 fault segments~abbreviations in text! are plotted end to end, with
north to left in all cases. The horizontal line over a given segment represents the slip of that segment at the time indicated.~Middle! plot of
difference in friction coefficientsms2md as a function of distance along faults.~Bottom! map view of fault segments shown superimpos
on a map of California. A segment is represented by the interval between dots.
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tively unobservable. In addition, computing a UTC opera
in the pattern variablesC(x,t) is problematic because of th
nature of the quiescent intervals. Long periods of activity
punctuated by short bursts of activity, making the definiti
of one or more time steps for the UTC problematic.

Our first attempts at forecasting the patterns seen in
earthquake simulations described below used just suc
UTC technique, which is based on a linear operator acting
a state at timet to predict a state or probability at timet
1Dt. As a result, the UTC forecast method is inheren
unable to distinguish between the long-term quiescence
precedes a large earthquake mainshock and the quiesc
that follows it. During the foreshock-mainshock-aftersho
sequence, it is true that the probability of an earthquake
any size in the source region remains high. However, wh
viewed over the entire earthquake cycle, the probability
the earthquake mainshock should clearly be greater in
years leading up to the mainshock sequence than in the y
following. Moreover, there is often a wide spectrum of tim
scales among the pattern states, a property that is extre
difficult for a method using a one-time-step UTC state tra
sition matrix to adequately capture. For these reasons,
attempts at forecasting simulated earthquakes using an
equal time correlation operator were not satisfactory, and
were thus motivated to develop the method described in
following.
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II. EXAMPLE: DYNAMICS AND ‘‘PATTERN DYNAMICS’’

Figure 2 illustrates space-time patterns of activity p
duced by a realistic earthquake fault model@34#. In this
model, 80 fault segments are endowed with static and kin
coefficients of friction, and are driven by a persistently i
creasing shear stress that, over long time intervals, prod
slip events whose time-averaged rate of slip is equal to
observed in nature. In the model, there are six major fau
the San Andreas~SA!, Imperial ~I!, Cerro Prieto~CP!, San
Jacinto~SJ!, Elsinore~E!, and Garlock~G!. The top diagram
is a plot with positions on all six faults concatenated toget
along the horizontal axis and with event times~lines! on the
vertical axis for a simulation run. The middle diagram is
plot of friction against position, and the bottom is a m
view of the faults. For this simulation, the coarse-grain
time intervalDt51 year. Details are given in Appendix B

Referring to the top diagram in Fig. 2, each horizontal li
represents an earthquake that occurred at the time indic
on the vertical axis. These data correspond to the observ
patternsC(x,t) described above. At each positionxi along
the earthquake faults, an activity time series can be c
structed for whichC(xi ,t)51 if an earthquake occurs a
time t, and C(xi ,t)50 otherwise. Thus we have 80 tim
series, one for each fault segment, and each with 2000
entries~2000 years in the simulation!. These data are mean



PRE 61 2421LINEAR PATTERN DYNAMICS IN NONLINEAR . . .
FIG. 3. Events at year~time step! 21 664.~a! Slip plotted against distance.~b! Map view of events.
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to be a relatively realistic representation of actual seis
events. Like the real faults, the functionC(x,t) represents
the observable data and encodes all space-time patterns
may exist. In contrast, there are many unobservable par
eters in the simulations. As described in Appendix B, ea
fault segment has coefficients of friction, a slip state variab
two stress variables~shear and normal stress!, and so forth.
In the real earth, at present there is no realistic possibility
measuring values for these variables.

III. BASIC METHOD

Viewed over the long time spans of hundreds to tho
sands of years characteristic of the earthquake cycle, it
long been observed that earthquake mainshocks are recu
at quasiperiodic intervals@3#. For example, in the Nanka
Trough near southwest Japan, the average interval betw
mainshocks is 180667 years. For the San Andreas fault
Pallet Creek in the Big Bend region of southern Californ
the interval is 131610 years. Elsewhere along the San A
dreas, deviations from the mean are more significant@3#. At
the famous Parkfield, California site, as well as along
Alaska-Aleutian trench, and along the central and So
American subduction zones, average recurrence intervals
also well defined. However, temporal and spatial cluster
is also evident in these data, as has been discussed else
ic
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@3,35–38#. Analysis in Refs.@36,37# suggests that neither th
recurrent nature of the mainshocks, nor the observed spa
temporal clustering of activity is compatible with a Poiss
probability function.

Nevertheless, if we were to attempt the construction o
probability density functionP(xi ,t) to forecast an earth
quake mainshock on any of these fault segmentsxi , a plau-
sible approach would be to measure the average frequenc
mainshock events onxi by calculating

v i5pn i5pH number of events oni th segment

time interval J ~3!

and then write

P~xi ,t !5Zi
21$cosv i~ t2t0!%2. ~4!

The constantt0 would be determined as the time of the late
slip event, andZi is a normalizing factor. It is important to
emphasize that Eq.~4! refers to the probability of a main
shock, not to the foreshocks and aftershocks in the sou
region. This and other approaches have been examined i
literature@10–14,39–48#, but success has so far been mixe

The lack of success of present approaches has motiv
our search for an alternative method in whichP(xi ,t) is
constructed by taking account of the variability in the da
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FIG. 4. Events at year~time step! 22 554.~a! Slip plotted against distance.~b! Map view of events.
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as well as space-time correlations that may exist with acti
at other sitesxj . We have therefore developed a meth
based on a discrete Karhunen-Loeve expansion@24,25,27#
that allows computation of the ‘‘normal modes’’ of th
space-time pattern data from an equal-time correlation op
tor, yielding a set of eigenvectorsfn(x) and a corresponding
set of eigenfrequenciesvn , n51,...,N. If the process is sta
tistically stationary, as has been established for the me
field systems we consider, thesefn(x) and vn will them-
selves be independent of time. Hence fn(x) and vn can
justifiably be determined from anequal timecorrelation op-
erator. It is important to stress that, due to the long-ra
nature of the stress transfer Green’s function describing
faults, earthquake faults can be considered to be example
mean-field systems.

In the case of Fig. 2, we haveN580 such eigenvector
and eigenfrequencies. From these, we compute the comp
valued, reconstructed pattern stateCR(xi ,t):

CR~xi ,t !5 (
n51,N

ane2 ivntfn~xi !. ~5!

The constantsan are determined by fittingCR(xi ,t) to the
time t0i of the most recent slip event on segmentxi ,
CR(xi ,t0i)51 @refer to Eq.~21! below#. Expression~5! can
y

a-

n-

e
al
of

x-

in principle describe phenomena in a system character
by a large number of greatly diverse time scalest i
52p/v i .

From CR(xi ,t), we construct the real, observable part:

Cobs~xi ,t !5
1

&
$CR~xi ,t !1CR* ~xi ,t !%, ~6!

whereCR(xi ,t) is written in terms of a sum of eigenvecto
fn(x), which arise from an equal-time correlation operat
A correlation function is related to a probability densi
function. In this sense,CR(xi ,t) thus represents the ‘‘squar
root’’ of a probability, therefore a probability amplitude:

P~xi ,t !5uCobs~xi ,t !u25$Cobs~xi ,t !%2. ~7!

Thus theprobability amplitudesassociated with the ‘‘pattern
dynamics’’ evolve linearly over the time interval$t,t
1Dt%, even though theunderlying dynamicsdo not.

As an example, for a model withN independent, nonin-
teracting segments, we have

fn~xi !5dni , ~8!

wheredni is the Kronecker symbol. Using Eqs.~5!–~8! for
this case, we find an expression forP(xi ,t) that is identical
to Eq. ~4!. The more interesting question arises when all
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FIG. 5. Eigenvectorf1 . ~a! Eigenvector plotted against distance. For display purposes,f1 are scaled so that max$uf1u%51. ~b! Map view.
Values at all segmentsxi at whichf1(xi).0.05 are shown with a bold line. Values at all segmentsxi at whichf1(xi),20.05 are shown
with a dotted line. All other segments shown with a thin line. Period5804 years.
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the segments or cells in a more general threshold sys
interact. In that case, it is not clear from the above discuss
how the eigenvectors and eigenfrequencies can be comp
We address this topic in the following section.

IV. CORRELATION OPERATORS

When cells of a threshold system or other nonlinear s
tem interact, it is likely that space-time correlations and p
terns will develop~see, e.g., Refs.@10,49–51#!. Correlations
in the state variabless(x,t) ands(x,t) lead to correlations in
the firing activity pattern variablesC(x,t). To describe the
correlations inC(x,t), one can for example define any of
large number of equal time correlation operators. We c
sider two, astaticcorrelation operator, and arate correlation
operator. Thestatic correlation operatorC(xi ,xj ) between
discrete sites atxi andxj is

C~xi ,xj ![
1

T E
0

T

dt z~xi ,t !z~xj ,t !, ~9!

where z(xi ,t) is the mean-zero, univariant time series o
tained from the activity time seriesC(xi ,t). The rate corre-
lation operatorK(xi ,xj ) is
m
n

ed.

-
t-

-

-

K~xi ,xj ![2
1

T E
0

T

dt
]z~xi ,t !

]t

]z~xj ,t !

]t
. ~10!

Both of the operators~9! and ~10! are symmetric, rank-N
matrix operators that can be diagonalized using stand
methods. C(xi ,xj ) is the Karhunen-Loeve operato
@24,25,27# corresponding to the time seriesz(xi ,t). The ei-
genvalues ofC(xi ,xj ) represent relative probabilitiespn ,
with corresponding eigenvectorsxn(xi). K(xi ,xj ), however,
is a new operator related toC(xi ,xj ), involving the time
series ]z(xi ,t)/]t. The eigenvalues ofK(xi ,xj ) are the
squares of inverse times (1/tn)2, and are related to frequen
cies vn52p/tn , with corresponding eigenvectorsfn(xi).
The latter are just the eigenfrequencies and eigenvectors
we use to define the reconstructed pattern stateCR(xi ,t) in
Eq. ~5!. In Appendix A, we discuss the physical significan
of the eigenvalues ofK(xi ,xj ).

Other correlation operators could be defined as well.
example, one can define a time seriesy(xi ,t) whose entries
are the slip on segmentxi in the time interval$t,t1Dt% and
whose eigenvalues have the units of slip squared. Or one
define a time seriesw(xi ,t) whose entries are the number
events and whose eigenvalues are the squares of relative
quencies. Or one can define a covariance matrix ifz(xi ,t) is
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2424 PRE 61RUNDLE, KLEIN, TIAMPO, AND GROSS
not univariant, and so forth. Any of these possible opera
can be examined using the methods we describe, som
which we are in the process of studying. Each yields diff
ent information about correlations in the patterns and
processes in the system. The eigenvectors of each co
information related to the spatial correlations between s
ments.

Since C(xi ,t) and z(xi ,t) represent time series whos
elements are impulse functions, it is operationally difficult
compute the time derivatives in Eq.~10!. Computing
K(xi ,xj ) is therefore difficult, whereas computingC(xi ,xj )
is easy. As a result, we propose an alternative appro
based on Fourier transforms:

z~xi ,t !5
1

A2p
E

2`

`

dÃ i ei v̄ i tẑ~xi ,Ã i !. ~11!

Then,

C~xi ,xj !5E
2`

` E
2`

`

dÃ idÃ j P* ~xi ,xj ,Ã i ,Ã j !, ~12!

K~xi ,xj !5E
2`

` E
2`

`

dÃ idÃ jÃ iÃ j P* ~xi ,xj ,Ã i ,Ã j !.

~13!

P* (xi ,xj ,Ã i ,Ã j ) is the joint probability density of the two
variablesÃ i , Ã j :

P* ~xi ,xj ,Ã i ,Ã j !5 ẑ~xi ,Ã i !ẑ~xj ,Ã j !

3H 1

2pT E
0

T

dt ei ~Ã i1Ã j !tJ . ~14!

The covariancêÃ iÃ j& is then

K Ã iÃ j5
*2`

` *2`
` dÃ idÃ jÃ iÃ j P* ~xi ,xj ,Ã i ,Ã j !

*2`
` *2`

` dÃ idÃ j P* ~xi ,xj ,Ã i ,Ã j !
.

~15!

If we assume that the joint spectra of the time series
simultaneously sharply peaked about the average frequen
^Ã i& and ^Ã j&,

UŠ~Ã i2^Ã i&!~Ã j2^Ã j&!‹

^Ã i&^Ã j&
U!1, ~16!

we obtain the result

K~xi ,xj !'C~xi ,xj !^Ã i&^Ã j&. ~17!

The frequencieŝÃ i& are observables, they are simply

^Ã i&5pn i ~18!

from Eq. ~3!.
OnceK(xi ,xj ) is found from Eq.~17!, it can be diagonal-

ized to obtain the normal modes of the patterns, the eig
frequenciesvn and the eigenvectorsfn(xi). The eigenvec-
tors provide information about specific patterns of spa
correlations between sites, and the eigenfrequencies pro
rs
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g-

ch
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ies

n-

l
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information about how often these recur.fn(xi) andvn can
be inserted into Eq.~5! to obtain CR(xi ,t); then forecast
probabilitiesP(xi ,t) can be computed using Eq.~7!.

V. FORECAST METHODOLOGY

Our forecast methodology makes use of Eqs.~5!–~7!.
Given an observed patternC(x,t), we wish to compute
P(xi ,t1Dt), the probability density for ‘‘firing’’ activity at
the next time step. From Eq.~6! we have

Cobs~xi ,t !5
1

&
$CR~xi ,t !1CR* ~xi ,t !%

5 (
n51,N

bn cos$vnt%fn~xi !. ~19!

Our approach is to use the observed pattern dataC(x,t)
prior to t1Dt to find fn(xi) and vn from the operator
K(xi ,xj ). Furthermore, if thebn are known, Eq.~6! can then
be used to computeP(xi ,t1Dt):

P~xi ,t1Dt !5uCobs~xi ,t1Dt !u25$Cobs~xi ,t1Dt !%2.
~20!

To fix theN valuesbn in Eq. ~19!, we find the most recen
time tmi prior to time t at which the segment or cell atxi
‘‘fires.’’ We then require that

Cobs~xi ,t0i !5~21!m. ~21!

Herem represents the index of each event at sitexi , with the
first event beingm50, the next event beingm51, and so
forth. Condition~21! then leads to a set ofN3N independent
equations that can be solved by standard methods. This
tire process is then repeated in an iterative mode to calcu
P(xi ,t12Dt), and so forth, always taking care to use t
most recent data to calculate thebn .

VI. APPLICATION: PATTERNS IN NUMERICAL
SIMULATIONS OF EARTHQUAKES

As an illustration of the points discussed above, we u
these methods to calculate the probability of activity on
realistic model of an earthquake fault system. Details of t
model are described in Appendix B.

Simulations totaling tens of thousands of model ye
were carried out. In Fig. 2, we show a time-distance plot
all the events occurring in 2000 years of simulation data a
all initial transients have died away, with a reference m
view of the model fault system. Figure 3 shows the event
year 21 664, and in Fig. 4, the events at year 22 554. The
shown in Fig. 2~top! were used to constructC(xi ,xj ) and
K(xi ,xj ), from which were obtained the eigenvectorsfn(x)
and eigenfrequenciesvn . The first three spatial eigenvecto
for the 6000-year time period preceding the data shown
Fig. 2 are shown in Figs. 5–7. It is interesting that betwe
distances;500 km to;1000 km, the eigenvector in Fig.
has 0 spatial nodes, the eigenvector in Fig. 6 has one sp
node, and the eigenvector in Fig. 7 has two spatial nod
From the completeness and orthonormality of the eigenv
tors in the pattern basis set, it can easily be shown that
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FIG. 6. Eigenvectorf2 , as in Figs. 5~a! and 5~b!. Period5680 years.
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pattern of slip probability amplitude~e.g.,561 where fault
segment slips;50 where fault segment is quiescent! can be
reproduced by superposition of the appropriate eigenvec

Using the methods outlined above, the probabil
P(xi ,t) for fault segmentxi to slip at timet was computed.
The eigenstates and eigenperiods were obtained from a s
lation data set over the 6000 years prior to the data to
predicted~‘‘training data set’’!, so as to minimize biases
The results are shown in Fig. 8, which shows a 300-y
subset of simulation data taken from that shown in Fig.
Figure 8 also shows contours of probabilityP(xi ,t) super-
posed on the previous simulation data. It can be seen th
many cases, there is reasonable agreement between
abilities and the time and location of events, although
‘‘false alarm’’ rate is high.

VII. ‘‘RANDOMIZED MODEL’’ AND UNCERTAINTY
PRINCIPLE

Success in forecasting future events using the pattern
namics method depends on the capability of accurately
trieving both the eigenvectorsfn(xi) and the eigenfrequen
ciesv i . For purposes of comparison, it is useful to have
alternative model, which we call the ‘‘randomized model
which illuminates trade-offs in different approaches. Th
new model defines the eigenfrequencies at each site m
rs.

u-
e

r
.

in
ob-
e

y-
e-

n

ch

more precisely, but at the expense of losing important inf
mation about the spatial correlation patterns.

The impulsive time series defining the correlation ope
tors consist of signals that are sharply localized in tim
However, time series having signals localized in time hav
relatively flat spectrum over a broad range of frequenc
The uncertainty principle for Fourier transforms@28# defined
using Eq.~23! indicates that

$^Dv&^Dt&%>p. ~22!

This result suggests a simple but illustrative strategy to
prove the frequency resolution of the method describ
above: that we add a random time increment, drawn from
uniform distribution of times about the original firing time
to each firing time of theyi(tm). In this way, we degrade the
temporal resolution without changing the average freque
n i or the mean firing time. We should then expect that re
lution of normal mode frequencies will improve. Howeve
as remarked above, important information will be lost abo
the spatial correlations of the various sites.

To test this idea, we defined a set of new random ti
seriesyi8(tm), in which the time of each firing was altered b
the addition of a random number uniformly distributed
the interval @21/2n i ,11/2n i #. Because the randomize
times are uniformly distributed around the original firin
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FIG. 7. Eigenvectorf3 , as in Figs. 5~a! and 5~b!. Period5597 years.
e
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of
times, a memory of the original firing times is retained. W
then repeated the entire procedure and constructed new
cast probabilitiesP(xi ,t). The eigenvectors correspondin
to the three largest eigenvalues are shown in Figs. 9–1
re-

It

can be seen from these figures that better frequency res
tion is obtained at the cost of obtaining less knowledge ab
spatial correlations between sitesxi andxj . It is important to
note that this ‘‘randomized’’ model is not the only means
ic

FIG. 8. Superposition of events~solid horizontal lines! from year 22 500 to year 23 000 top with probabilitiesP(xi ,t) calculated

according to Eq.~20!. Light shaded regions are forP(xi ,t).1/3; dark shaded regions are forP(xi ,t).1/2. The method used was the bas
method described in Sec. V.
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FIG. 9. Eigenvectorf1 for randomized model, as in Figs. 5~a! and 5~b!. Period5580 years.
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trading frequency for spatial information, but has the virt
of being simple and illustrative, which is what we requi
here. Other methods, for example, those based on wav
@24# have been discussed extensively elsewhere. We dis
other methods in a separate publication@52#.

Results for the new forecast probabilities are shown
Fig. 12 for the same simulation data as was used in Fig. 8
several locations; for example, at distances ranging from
300 km, and from 500 to 1000 km, forecasts in Fig. 12
superior to those in Fig. 8. However, the likelihood ratio te
described below indicates that the original method with n
randomized times is more accurate overall.

VIII. STATISTICAL TEST OF FORECAST
PROBABILITIES

The method we describe can be tested by statistical m
to assess the quality of the forecast. The predictive skill o
proposed method can be compared, for example, to a s
dard Poisson model by computing a likelihood ratio. T
same method has been used to evaluate other proposed
cast methods, including time-to-failure models, for re
earthquakes@39#. The likelihood test is based on the idea th
a cost is incurred if a forecast method produces a false ala
i.e., an event during a time interval when no event occu
Using this test, we find that the pattern dynamics~PD!
method associates significantly more probability meas
ets
ss

n
In
to
e
t
-

ns
a
n-

re-
l
t
m,
s.

re

with the actual simulation events than does a compe
Poisson probability model.

The likelihood ratio method is described in detail els
where @39#, and only a brief summary is given here. Co
sider a given normalized probability densityP(x,t). If the
i th of N fault segments slipsQi times, so that there areNT
total events on all segments, the likelihood function is

L5)
i 51

NT

)
q51

Qi

P~xi ,tq!. ~23!

We wish to compare the quality of forecasts given by tw
probability distributions; for example, the PD metho
PPD(xi t) and a reference time-independent Poisson mo
Pp(x). The corresponding likelihoods are designated asLPD
andLP . To compare the two probability models, we define
composite likelihood ratio that involves a mixing ratior:

L~r !5)
i 51

NT

)
q51

Qi

P~xi ,tq ,r !, ~24!

where

P~xi ,tq ,r !5rPPD~xi ,tq!1~12r !Pp~xi !. ~25!

Equations~23!–~25! assumes that the earthquakes are all s
tistically independent, a standard assumption that is cle
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FIG. 10. Eigenvectorf2 for randomized model, as in Figs. 5~a! and 5~b!. Period5476 years.
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not correct in the case of our simulations. However, stati
cal independence is an assumption routinely used in ea
quake forecasting, and the Poisson model represents on
the current most widely used method for calculating
earthquake hazard@3,39#.

Significance of results. In Fig. 13, we plot the log-
likelihood ratio log10$LR(r )%, which is defined by

log10$LR~r !%5 log10H L~r !

Lp
J

5 log10$L~r !%2 log10$Lp%. ~26!

Likelihoods must be interpreted only by comparing probab
ity models fit to exactly the same data. In Fig. 13, we show
plot of log10$LR(r )% against the mixing ratior, correspond-
ing to the forecasts and simulation data in Figs. 8 and 12
both cases

L~r !@LP , r .0, ~27!

implying that LPD@LP . These results show that the P
model is substantially better~;20 in Fig. 8,;5 in Fig. 13
for large r! than the Poisson model at predicting the occ
rence times and locations of the synthetic events. The
probability models for both randomized and nonrandomiz
forecasts are those with the largestr. Cases withr 51 cannot
i-
h-
of

n

-
a

In

-
st
d

be evaluated: if an event were not predicted,PPD(xi ,tq)50
there. SinceLPD is a product of all the probabilities
PPD(xi ,tq) at the times and locations of the events,LPD
would be zero, and log10$LPD% would be undefined.

From examination of Figs. 8 and 13, it can be seen t
there exist a number of false positive space-time forecast
using the probability modelPPD(xi ,tm), as well as some
‘‘failures to predict.’’ However, the result~27! means that
PPD(x,t) still puts far more of its probability measure at th
times of the slip events than doesPP(x).

IX. FINAL COMMENTS

A variety of methods have been proposed for understa
ing the space-time patterns in driven nonlinear systems
cluding principal component analysis@26,31#, principal os-
cillation pattern @27–29# analysis, and singular spectrum
analysis@25,32,33#. However, in these systems, the variabl
that define the underlying dynamics are directly amenable
observation, in contrast to most driven threshold syste
such as neural systems, earthquakes, and disordered
netic systems. In these driven threshold systems, only
associated ‘‘derivative variables,’’ such as the correlated
ing activity or earthquakes, can be directly observed. T
the standard methods cannot be applied to threshold sys
without serious qualifications. Other methods that are be
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FIG. 11. Eigenvectorf3 for randomized model, as in Figs. 5~a! and 5~b!. Period5473 years.
es
ei
e

sh-
nta-
for

e in
nd-
examined elsewhere are described in Refs.@41–48,50,51#,
but these have so far not yielded adequate results for thr
old systems. Applications of our methods to observed s
micity data taken from real fault systems will be given els
where@52#.
h-
s-
-

Understanding the patterns of firings in nonlinear thre
old systems must proceed via the construction of represe
tive simulations and the development of analysis methods
the patterns that result. Once the analysis methods ar
place, they should be applied to forecasting and understa
r

FIG. 12. Superposition of events~solid horizontal lines! from year 22 500 to year 23 000 top with probabilitiesP(xi ,t) calculated

according to Eq.~20! using ‘‘improvements’’ described in Sec. VII. Light shaded regions are forP(xi ,t).1/3; dark shaded regions are fo
P(xi ,t).1/2.
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ing data from natural systems. In particular, it is often t
case that the largest correlated-firing events are the mos
frequent, but the most important to understand, since t
usually act to slave the entire system. For earthquake mo
these correspond to the largest and most destructive ev
Detailed pattern analysis may allow the patterns of sma
more frequent events leading up to the largest events to
detected and recognized. If this can be demonstrated, rel
forecasting of the largest events may be possible.
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APPENDIX A: EIGENVALUES OF K„xi ,xj…

In this appendix we give an argument as to why the
genvalues of the rate correlation matrixK(xi ,xj ) should
equal the square of the frequencies of the eigenmodes.
main assumptions we make for this illustration is that ea
fault segment that can fail has only one frequency, and
the time averaging period can be approximated by infinit

Consider first the simple case where each fault segm
has a different frequencyÃ i in the Fourier domain. Refer
ring to Eq.~11!, we can represent each time series as

z~xi ,t !5Re$z~xj ,0!ei v̄ j t%. ~A1!

In this case, with normalization, the static correlation mat
is the identity matrix. The rate correlation matrix is also d
agonal with elements ofÃ i

2. Consequently, in this simple
case the eigenvectors of the static correlation matrix and
rate correlation matrix are the same, and the eigenvalue
the rate matrix are simply the frequencies.

In the slightly more complicated case where the frequ
cies can be the same the matrices are no longer diago

FIG. 13. Plot of log-likelihood ratio log10$LR(r )% against mix-
ing ratior corresponding to event forecasts in Figs. 8~solid, circles!
and 12~dashed, triangles!.
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However, it is simple to see that any two rows have t
following property: either they are identical or they are d
joint. By disjoint we mean that the nonzero elements in o
row, say row 1, are zero in any other row that is not identi
to row 1. Since the numbering of the fault segments is a
trary, we can renumber so that all of the rows that are id
tical are grouped together. This will put the matrices
Jordan-normal form. That is, the matrices, both static a
rate correlation, are now made up of blocks of nonzero e
ments arranged along the diagonal. Each block has the s
nonzero element, which is simply the frequency squared
some element in the rate correlation matrix and one in
static matrix. Clearly, the eigenvalues of the rate matrix
the square of the frequencies times the eigenvalues of
static matrix.

In the case of real data, it is certainly true that the tim
averaging period is not infinite and the number of freque
cies for an individual fault element is not 1. However, the
is evidence that we discussed in the body of the paper
supports the point of view that the assumptions we made
good approximations. It is clear that there will be modific
tions that will need to be made to incorporate addition
modes and finite averaging times if we wish to forecast o
long times, and that the less periodic the individual fa
elements are, the more important the corrections will be.

APPENDIX B: EARTHQUAKE FAULT SYSTEM MODEL

A particularly complicated example of space-time p
terns in a nonlinear threshold system arises in the dynam
model of the earthquake fault system described in Ref.@34#.
In contrast to many current models in the literature desc
ing a single planar fault, the model in Ref.@34# includes all
of the major faults in southern California, albeit at a re
tively crude scale ~Fig. 2, bottom!. In this cellular
automaton-type model, each ofN580 fault segments is
driven at its own particular long-term rateV of a few
centimeters/year.

Segment i slips when the shear stressssb,i(t)
5mssnorm,i(t), where ms is a preassigned coefficient o
‘‘static’’ friction, and snorm,i(t) is the normal stress on th
segment. At failure, slip occurs that is sufficient to redu
ssh,i(t) to the valuessh,i(t)5mdsnorm,i(t), wheremd is a
coefficient of ‘‘dynamic’’ friction. The difference in fric-
tional coefficientsms2md is tuned so that realistic even
sequences on the middle~‘‘big bend’’ ! and southern parts o
the model San Andreas fault occur at realistic intervals
;150 years. Some tuning was also carried out to prod
‘‘realistic’’ sequences on the Imperial, the San Jacinto,
Elsinore, and Garlock faults, in contrast to frictional prope
ties on the Cerro Prieto and Northern San Andreas fault s
ments, which were not tuned. Time steps of one year
used. Interactions between segments allow stress transf
that one slipping sement can induce others to slip as we
the same event. Realistic directionally dependent elastic
viscoelastic interactions are included by means of the st
Green’s functions. In Fig. 2~bottom! we show a map view of
the 80 segments of the model, each of which is a vert
rectangular slip surface. These segments extend to a dep
18 km in an elastic plate of thickness 30 km. The plate ov
lies, and is in welded contact with, a Maxwell viscoelas
half space in which shear stress can relax via viscoela
flow. The reader is referred to Ref.@34# for other details.
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