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Complex nonlinear threshold systems frequently show space-time behavior that is difficult to interpret. We
describe a technique based upon a Karhunen-Loeve expansion that allows dynamical patterns to be understood
as eigenstates of suitably constructed correlation operators. The evolution of space-time patterns can then be
viewed in terms of a “pattern dynamics” that can be obtained directly from observable data. As an example,
we apply our methods to a particular threshold system to forecast the evolution of patterns of observed activity.
Finally, we perform statistical tests to measure the quality of the forecasts.

PACS numbeps): 02.50.Ey

[. INTRODUCTION terns displayed by the variables in which the underlying dy-
namics is formulateds(x,t) and o(x,t). These latter vari-
Driven nonlinear threshold system are comprised of interables can also be expected to display patterns and
acting spatial networks of statistically identical, nonlinearcorrelations, from which the patterns in firing activity
units or cells that are subjected to a persistent driving forcd/ (x,t) ultimately arise. However, patterns s(x,t) and
or current. A cell “fires” or “fails” when the force, electri-  a(X,t) are not of interest to us here, since in the systems we
cal potential, or other physical variabte(x,t) on a cell at ~consider they are effectively not observable.
position x and timet reaches a predefined force threshold The firing activity W'(x,t) can be represented as a set of
o". The result is an increase in an internal state variabléime series at all position, with W(x,t) defined by
s(x,t) of the cell, as well as a decrease in the force or po¥W(x,t)=1 if a firing event occurs betweeft,t+ At};
tential sustained by the cell to a residual valfe Thresh-  W(x,t) =0 otherwise. The basic problem is illustrated in Fig.
olds, residual stresses, and internal states may be modified By The state variable(x,t) at positionx and timet evolves
the presence of quenched disorder. The dynamics may al$ a values(x,t+At) under the action of the deterministic
be modified by the presence of noise or annealed disordedlynamicsD;:
Interactions between cells may be excitatgrgsitive in the
sense that failure of connected neighbors brings a cell closer

to firing or inhibiting (negative in the opposite case. Ex- Di{s(x,t)}—s(x,t+At). ()
amples of such systems include earthquakies3], neural

networks [4,5], depinning transitions in charge-density Observable

waves and superconductdi®], magnetized domains in fer- D e
romagnet$7], sandpile$8], and foamg9]. Numerical simu- :; :

lations of these systems reveal spatial and temporal patterns W(x,0) % P Yaway

of firings W(x,t) that are richly complex and difficult to H ‘?{3‘;?;23‘ e
understand from any deterministic point of vigd0]. Un- { o Dynamics” °

derstanding such patterns will increase our understanding of o ; _____
the physics of the systems themselves, since these space-time ° °

patterns are emergent processes that reflect the structures ° grue o

dynamics, and properties of the underlying high-dimensional D;far;lf'?;‘;s""

nonlinear system.

In a number of these driven threshold systems, there ex- b
ists the further difficulty that the deterministic dynamics, to-
gether with values of the state variabls&,t), are often
unknown or unobservable. However, the associated firing ac-
tivity pattern variables¥ (x,t) are easily observable. It is FIG. 1. Schematic diagram of threshold systems, including un-
important to note here that the space-time patterns in firingbservable state variable$x,t) and observable pattern variables
activity W (x,t) should not be confused with space-time pat-¥(x,t).

t

Unobservable
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The force or potentiabr(x,t) associated withs(x,t) also  nient analogy for the relationship betwe®(D,) andD, is
evolves too(x,t+At). the correspondence between an equilibrium dynamical sys-
The values of(x,t) ando(x,t), together with details of tem, such as an Ising model that is governed by a nonlinear
the dynamicsD,, are usually hidden from view, below the | angevin equation and the corresponding functional Fokker-
horizontal dashed line in Fig. 1. For example, it is not pos-pjanck equatiorf18,19. Evolution of dynamical variables,
sible to have simultaneous knowledge of all the cellular posych as the spin density, is governed by a strongly nonlinear
tentials of all neurons in a living brain at all timgsnor is it Langevin equation, but the probability density functions
known what dynamical details govern the temporal evolutioneyolve according to a linear functional Fokker-Planck equa-
of the potentials and currents in all cells. Another example igjon.
the stress and strain at every point within the earth along The assumption of a linear dynamics governing the
active earthquake fault systems. There exists no means gt_(x t) follows from the statistical time-stationary proper-
present to observe values for these variables everywhere gés of the underlying dynamics, which in turn justifies the
time t, as would be needed to understand details of the dygse of methods based upon a Karhunen-Loeve expansion.
namical processes that lead to earthquakes. While models fQe have shown in previous woflk0—27 that mean-field
such dynamics exist, it is not clear how accurately thesgnreshold systems, characterized by long-range interactions
represent reality, since they have not been demonstrated fRstween sites andx’, can be treated as equilibrium systems
be useful in reliable earthquake forecasting. and have dynamics that are statistically stationary over long
By contrast, examples of observable “firing” activity in- time intervals. These long intervals are eventually punctu-
clude the firing patterns in groups of neural cdlld—-14,  5ted by rare, large events that serve to reorder the entire
which can be measured via remotely sensed electrica_l neu@i/stem. As the range of interaction increases, these equilib-
probes, as well as earthquakes, which can be located in spaggmiike time intervals increase. In the limit of infinite range
and time to reasonable precision using seismogrpBs  jnteractions where mean-field conditions hold and the system
17]. Since both¥(x,t) and ¥ (x,t+At) are observable, it s ergodic, Poincate theorem[23] implies that dynamical
might be possible in principle to learn abddf, s(x,t), and  variables can be written as sums and integrals of complex
o(x,t) by studying the evolution of patterns. Unfortunately, exponentials. In the work described here, we will construct a
there exists no evidence at present tgx,t) is uniquely  pattern dynamics for these mean-field systems.
related tos(x,t) ando(x,t). In other words, there may be @~ Qur approach is similar in some respects to previous ones
large number of states(x,t) that produce a similar pattern that use correlation method$0,25,26, but also has impor-
W(x,t), or a large number of pattern®(x,t) associated tant differences. In most of these methods, a formalism is
with similar statess(x,t). This weak association between constructed that in effect uses space-time patterns to extrapo-
s(x,t) andW(x,t) is represented schematically in Fig. 1 by alate future system behavior. However, our approach differs
vertical dotted line. in that we retrieve a complete set of space-time patterns rep-
In attempting to forecast the future evolution of driven resented by the eigenvectapg(x;) and eigenfrequencies,
threshold systems, the most common approach {@)teise  of an equal time, rate-rate correlation function. Thg(x;)
observations of¥(x,t) to infer s(x,t); then(2) uses(x,t)  provide information about spatial correlations of patterns,
together with an assumed model for the dynanilgso cal-  whereas thew, provide information regarding how often
culate s(x,t+At); and finally (3) use s(x,t+At) to infer  each spatial correlatiofeigenvector is represented in the
W (x,t+At), which represents the observable pattern of in-observed data. If the process is statistically stationary, as we
terest. However, this method involves a long chain of infer-have established for the mean-field threshold systems we
ence and assumption, particular links of which may not beonsider, thesep,(x;) and w, will themselves be indepen-
well justified. In an alternative approach, we propose thedent of time Henceg,(x;) and o, can justifiably be deter-
construction of an approximate dynamics based omnined from an equal time correlation operator. From these
Karhunen-LoeveKL) methods that associate a future pat-eigenvectors and eigenfrequencies, as well as initial-value
tern stateV (x,t+ At) with an earlier pattern stad¥(x,t) by  data on the most recent “firing” activity at each spatial lo-

means of an assumed “pattern dynamics” operd®D;):  cation, we obtain the reconstructed pattern sttigXx,t),
which in turn is used to compute a probability density func-
P(D{P(x,1)}=W(x,t+At). (2 tion P(x,t).

Forecasting the future evolution of other nonlinear sys-
Moreover, we propose to constru@(D;) without any  tems, such as climate, weather, or EI Nino—southern oscilla-
knowledge of the true deterministic dynamil@s, using only tions, often involves the computation of an unequal time cor-
knowledge of the pattern states precedifx,t). relation function(UTC) over short time interval$26—33.

The pattern dynamics operator that we construct operatggowever, in these systems, which are not “threshold sys-
on a space of function¥ g(x,t) that we call “reconstructed tems” in the sense we consider here, the state variables
pattern states.” Th&g(x,t) are continuous in time and rep- s(x,t) and force variables(x,t) that define the true deter-
resent approximations, in the sense described below, to thainistic dynamicscan be directly observed. These include
pattern statedl'(x,t). In fact, theWg(x,t) will be seen to  wind speeds, temperatures, pressures, and so forth. The dy-
represent probability amplitudes from which probability den-namics, as represented by the Navier-Stokes equation, are
sity functions for firing activity may be calculated. In con- essentially known. In the case of earthquakes however, it
trast to the underlying deterministic dynamlog, which are  would not be useful to construct a UTC operator for the state
most probably strongly nonlinear, the operaf®(D,) is as- variabless(x,t) and o(x,t), since the corresponding field
sumed to be linear over small time interval$. A conve- variables(stresses and displacements on fauitee effec-



2420 RUNDLE, KLEIN, TIAMPO, AND GROSS PRE 61

2.30x10%

2.25x10%

2.20x10%

Time (years)

2.15x10%

Q 500 1000 1500 2000
Distance (km)

FIG. 2. (Top) time-distance plot of simulated seismic activity=80 fault segmentgabbreviations in textare plotted end to end, with
north to left in all cases. The horizontal line over a given segment represents the slip of that segment at the time iiMiiddle)dplot of
difference in friction coefficientg.s;— uq as a function of distance along fault®ottom) map view of fault segments shown superimposed
on a map of California. A segment is represented by the interval between dots.

tively unobservable. In addition, computing a UTC operatorll. EXAMPLE: DYNAMICS AND “PATTERN DYNAMICS”
in the pattern variable¥ (x,t) is problematic because of the . , . -
nature of the quiescent intervals. Long periods of activity are Figure 2 |IIust.rat.es space-time patterns of act|V|ty bro-
punctuated by short bursts of activity, making the definitionduced by @ realistic earthquake fault mod8H]. In this
of one or more time steps for the UTC problematic. modgl,. 80 fault sggments are endqwed with statlg and quetlc
Our first attempts at forecasting the patterns seen in thgo€fficients of friction, and are driven by a persistently in-
earthquake simulations described below used just such @€asing shear stress that, over long time intervals, produces
UTC technique, which is based on a linear operator acting ofliP events whose time-averaged rate of slip is equal to that
a state at time to predict a state or probability at tinte observed in nature. In the model, there are six major faults:
+At. As a result, the UTC forecast method is inherentlythe San AndreasSA), Imperial (1), Cerro Prieto(CP), San
unable to distinguish between the long-term quiescence thacinto(SJ, Elsinore(E), and GarlockG). The top diagram
precedes a large earthquake mainshock and the quiescerige plot with positions on all six faults concatenated together
that follows it. During the foreshock-mainshock-aftershockalong the horizontal axis and with event timgiaes) on the
sequence, it is true that the probability of an earthquake o¥ertical axis for a simulation run. The middle diagram is a
any size in the source region remains high. However, wherplot of friction against position, and the bottom is a map
viewed over the entire earthquake cycle, the probability oiview of the faults. For this simulation, the coarse-grained
the earthquake mainshock should clearly be greater in théme intervalAt=1 year. Details are given in Appendix B.
years leading up to the mainshock sequence than in the years Referring to the top diagram in Fig. 2, each horizontal line
following. Moreover, there is often a wide spectrum of time represents an earthquake that occurred at the time indicated
scales among the pattern states, a property that is extremedy the vertical axis. These data correspond to the observable
difficult for a method using a one-time-step UTC state tran-patternsW¥ (x,t) described above. At each positianalong
sition matrix to adequately capture. For these reasons, odhe earthquake faults, an activity time series can be con-
attempts at forecasting simulated earthquakes using an ustructed for whichW(x;,t)=1 if an earthquake occurs at
equal time correlation operator were not satisfactory, and wéme t, and ¥ (x;,t) =0 otherwise. Thus we have 80 time
were thus motivated to develop the method described in thseries, one for each fault segment, and each with 2000 time
following. entries(2000 years in the simulatiopnThese data are meant



PRE 61

LINEAR PATTERN DYNAMICS IN NONLINEAR . ..

Slip (m)

TTT T T T T T[T i

o] 500

Friction

oo b by

1000

1500

2000

2421

0 500 1000 1500 2000
(a) Distance {km)

1000 H T ]

500 -

o _

L N ]

L \\ .

-500 - \ _

-1000p~ , ., ., oy T

—-1000 -500 0 500 1000

(b)

FIG. 3. Events at yeaitime step 21 664.(a) Slip plotted against distancéy) Map view of events.

to be a relatively realistic representation of actual seismi¢3,35—3§. Analysis in Refs[36,37] suggests that neither the
events. Like the real faults, the functioki(x,t) represents recurrent nature of the mainshocks, nor the observed spatial-
the observable data and encodes all space-time patterns thiemporal clustering of activity is compatible with a Poisson
may exist. In contrast, there are many unobservable paranprobability function.

eters in the simulations. As described in Appendix B, each Nevertheless, if we were to attempt the construction of a
fault segment has coefficients of friction, a slip state variableprobability density functionP(x;,t) to forecast an earth-
two stress variablesshear and normal stressand so forth. quake mainshock on any of these fault segmentsa plau-

In the real earth, at present there is no realistic possibility okible approach would be to measure the average frequency of
measuring values for these variables. mainshock events or by calculating

Ill. BASIC METHOD w=TVi=T

number of events onith segment
time interval "] &
Viewed over the long time spans of hundreds to thou-
sands of years characteristic of the earthquake cycle, it haand then write
long been observed that earthquake mainshocks are recurrent
at quasiperiodic interval§3]. For example, in the Nankai
Trough near southwest Japan, the average interval between
mainshocks is 18067 years. For the San Andreas fault at The constant, would be determined as the time of the latest
Pallet Creek in the Big Bend region of southern California,slip event, andZ; is a normalizing factor. It is important to
the interval is 13% 10 years. Elsewhere along the San An-emphasize that Eq4) refers to the probability of a main-
dreas, deviations from the mean are more signifi€ahtAt shock, not to the foreshocks and aftershocks in the source
the famous Parkfield, California site, as well as along theegion. This and other approaches have been examined in the
Alaska-Aleutian trench, and along the central and Southiterature[10—14,39—48 but success has so far been mixed.
American subduction zones, average recurrence intervals are The lack of success of present approaches has motivated
also well defined. However, temporal and spatial clusteringur search for an alternative method in whietfx;,t) is
is also evident in these data, as has been discussed elsewheomstructed by taking account of the variability in the data,

P(x; 1) =2, Y{cosm;(t—to)}2. )
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FIG. 4. Events at yealtime step 22 554.(a) Slip plotted against distancé) Map view of events.

as well as space-time correlations that may exist with activityin principle describe phenomena in a system characterized
at other sitesx;. We have therefore developed a methodby a large number of greatly diverse time scales
based on a discrete Karhunen-Loeve expangi®h25,27 =27l w; .

that allows computation of the “normal modes” of the  FromWg(x;,t), we construct the real, observable part:
space-time pattern data from an equal-time correlation opera-
tor, yielding a set of eigenvectoes,(x) and a corresponding
set of eigenfrequencies,, n=1,...N. If the process is sta-
tistically stationary, as has been established for the mean-

field systems we consider, thegg(x) and w, will them-  \whereWw(x; ,t) is written in terms of a sum of eigenvectors
selves be independent of timeence ¢,(x) and w, can 4 _(x), which arise from an equal-time correlation operator.
justifiably be determined from aequal timecorrelation op- A correlation function is related to a probability density
erator. It is important to stress that, due to the long-rangeunction. In this senseP (x; ,t) thus represents the “square

nature of the stress transfer Green’s function describing regbot” of a probability, therefore a probability amplitude:
faults, earthquake faults can be considered to be examples of
P(Xi vt): |q,0bs(xi !t)|2:{‘y0bixi !t)}z' (7)

mean-field systems.
In the case of Fig. 2, we havd=80 such eigenvectors
and eigenfrequencies. From these, we compute the complexhus theprobability amplitudesassociated with the “pattern
valued, reconstructed pattern statg(x; ,t): dynamics” evolve linearly over the time intervaft,t
+At}, even though thenderlying dynamicslo not.
As an example, for a model witN independent, nonin-
(5) teracting segments, we have

®n(Xi) = Sni ®

1
Wopd X ,t) = 5{\PR(Xi B+ WR(X D}, (6)

V(X ’”:n;N ane” Ot (%)),

The constantsy,, are determined by fittingV' g(x; ,t) to the
time ty; of the most recent slip event on segmenqt,
WX, toi) =1 [refer to Eq.(21) below]. Expression5) can

where §,;; is the Kronecker symbol. Using Eq&)—(8) for
this case, we find an expression #(x; ,t) that is identical
to Eq. (4). The more interesting question arises when all of
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FIG. 5. Eigenvector, . (a) Eigenvector plotted against distance. For display purpasgare scaled so that mf;|}=1. (b) Map view.
Values at all segmentg at which ¢,(x;)>0.05 are shown with a bold line. Values at all segmeatat which ¢,(x;) <—0.05 are shown
with a dotted line. All other segments shown with a thin line. Peri8@4 years.

the segments or cells in a more general threshold system 1 IT az(X; ,t) 9z(X; 1)
(10

interact. In that case, it is not clear from the above discussion K(Xi, X)) =— T pr ot
how the eigenvectors and eigenfrequencies can be computed. 0

We address this topic in the following section.
P 9 Both of the operatorg9) and (10) are symmetric, rankd

matrix operators that can be diagonalized using standard
IV. CORRELATION OPERATORS methods. C(x;,x;) is the Karhunen-Loeve operator
When cells of a threshold system or other nonlinear sys[24’25|’22 co;éespondlng to the t'm? s_,enesxi bt)b'll'he e
tem interact, it is likely that space-time correlations and pat9€nvalues ofC(x;,x;) represent relative probabilities,,
terns will develop(see, e.g., Ref§10,49-51). Correlations  With corresponding eigenvectogg(x). K(x;,x;), however,
in the state variables(x,t) anda(x,t) lead to correlations in 1S & NeW operator related 6(x;,x;), involving the time
the firing activity pattern variable® (x,t). To describe the S€ries dz(x; ,t)/dt. The elgegvalues oK(x;,x)) are the
correlations in¥ (x,t), one can for example define any of a Sduares of inverse times (1)°, and are related to frequen-
large number of equal time correlation operators. We conS€S @n=2m/7,, with corresponding eigenvectogs,(x;).
sider two, astatic correlation operator, andrate correlation The latter are just the eigenfrequencies and eigenvectors that

operator. Thestatic correlation operatoC(x; ,x;) between W€ Uuse to define the reconstructed pattern siagex; ,t) in
discrete sites at; andx; is Eq. (5). In Appendix A, we discuss the physical significance

of the eigenvalues dk(X; ,x;).
1 (T Other correlation operators could be defined as well. For
C(X; ,X))= Tf dt z(x ,t)z(x; 1), 9) example, one can deflng a tlmg seryeéxi ,t) whose entries
0 are the slip on segment in the time intervaft,t+ At} and
whose eigenvalues have the units of slip squared. Or one can

where z(x; ,t) is the mean-zero, univariant time series ob-define a time series(x; ,t) whose entries are the number of
tained from the activity time serie¥ (x; ,t). Therate corre-  events and whose eigenvalues are the squares of relative fre-
lation operatoiK(x;,X;) is quencies. Or one can define a covariance matreif ,t) is
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not univariant., and so forth. Any of these possib!e operatorsnformation about how often these recur,(x;) andw, can
can be examined using the methods we describe, some gt inserted into Eq(5) to obtain Wg(x;,t); then forecast

which we are in the process of studying. Each yields differ-probabilitiesP(xi ,t) can be computed using E€).
ent information about correlations in the patterns and the

processes in the system. The eigenvectors of each contain V. EORECAST METHODOLOGY
information related to the spatial correlations between seg-
ments. Our forecast methodology makes use of E¢—(7).

Since ¥ (x;,t) and z(x;,t) represent time series whose Given an observed pattertf(x,t), we wish to compute
elements are impulse functions, it is operationally difficult to P(x; ,t + At), the probability density for “firing” activity at
compute the time derivatives in Eql10). Computing the next time step. From E@6) we have

K(x;,X;) is therefore difficult, whereas computirfgx; ,x;)

is easy. As a result, we propose an alternative approach 1 .
based on Fourier transforms: Wopd Xi 1) = E{‘I’R(Xi O+ PR, D}
1 » —
Z(X,t) = —f dw; e'“i'2(x; ). (13) = > Bacodwutdn(x). (19
N2 ) - n=1N
Then, Our approach is to use the observed pattern dafa,t)

prior to t+At to find ¢,(X) and w, from the operator

S K(x;,x;). Furthermore, if thgs,, are known, Eq(6) can then
)= fﬁwjixdmidij*(xi X)), (120 e ised 1o computB(x; ,t+Atn):

o [ P(X; 1+ At =W opd X; , t+ A [2={W gpd x; , t+ At}
K(Xi ,Xj):f f dmidmjmiwjp*(xi ,Xj,ﬁ)'i,’m'j). (20)

(13 To fix the N valuesg,, in Eq.(19), we find the most recent
time t,,,; prior to timet at which the segment or cell &t
P, (X ,X; , @, ;) is the joint probability density of the two “fires.” We then require that
variablesw; , @;:
W opd X toi) = (= 1)™. (21)
P (Xi X, @i, @) =2(X; , @) (X} , @) . o
Herem represents the index of each event at sitewith the

" LJ'Tdte'(“’i”’i)t} (14) first event beingn=0, the next event beingh=1, and so

27T Jo ) forth. Condition(21) then leads to a set & X N independent
equations that can be solved by standard methods. This en-
The covariancéw;w;) is then tire process is then repeated in an iterative mode to calculate

P(x; ,t+2At), and so forth, always taking care to use the
JZ2. 07 dwidwjwiw Py (X, X, &, @) most recent data to calculate tjgg.
@i ffwftfxdmidij*(Xi,Xj,mi,mj) '
(15 VI. APPLICATION: PATTERNS IN NUMERICAL

SIMULATIONS OF EARTHQUAKES
If we assume that the joint spectra of the time series are

simultaneously sharply peaked about the average frequencies AS an illustration of the points discussed above, we used

(w;) and(w;) these methods to calculate the probability of activity on a

' i realistic model of an earthquake fault system. Details of this
((Wi‘(ﬁfi))(ﬁfj‘(mj)))\ model are described in Appendix B.

(o)(w,) |<1, (16) Simulations totaling tens of thousands of model years

were carried out. In Fig. 2, we show a time-distance plot of
all the events occurring in 2000 years of simulation data after
all initial transients have died away, with a reference map
K (% X))~ C (X X)) {w){w}). (17) view of the model fault system. Figure 3 shows the events at
year 21 664, and in Fig. 4, the events at year 22 554. The data
The frequenciegw;) are observables, they are simply shown in Fig. 2(top) were used to constru@(x;,x;) and
K(x;,X;), from which were obtained the eigenvectafg(x)
(w;)=mv; (18 and eigenfrequencies, . The first three spatial eigenvectors
for the 6000-year time period preceding the data shown in
from Eq. (3). Fig. 2 are shown in Figs. 5—7. It is interesting that between
OnceK(x;,¥;) is found from Eq(17), it can be diagonal-  distances~500 km to~1000 km, the eigenvector in Fig. 5
ized to obtain the normal modes of the patterns, the eigerhas 0 spatial nodes, the eigenvector in Fig. 6 has one spatial
frequenciesw,, and the eigenvectoré,(x;). The eigenvec- node, and the eigenvector in Fig. 7 has two spatial nodes.
tors provide information about specific patterns of spatialFrom the completeness and orthonormality of the eigenvec-
correlations between sites, and the eigenfrequencies providers in the pattern basis set, it can easily be shown that any

we obtain the result
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FIG. 6. Eigenvectokp,, as in Figs. 5 and 3b). Period= 680 years.

pattern of slip probability amplitudée.g.,==+1 where fault more precisely, but at the expense of losing important infor-

segment slips: 0 where fault segment is quiescepan be  mation about the spatial correlation patterns.

reproduced by superposition of the appropriate eigenvectors. The impulsive time series defining the correlation opera-
Using the methods outlined above, the probabilitytors consist of signals that are sharply localized in time.

P(x;,t) for fault segmenk; to slip at timet was computed. However, time series having signals localized in time have a

The eigenstates and eigenperiods were obtained from a simtelatively flat spectrum over a broad range of frequencies.

lation data set over the 6000 years prior to the data to b&he uncertainty principle for Fourier transfor28] defined

predicted (“training data set’), so as to minimize biases. using Eq.(23) indicates that

The results are shown in Fig. 8, which shows a 300-year

subset of simulation data taken from that shown in Fig. 2. {Aw){At) =, (22

Figure 8 also shows contours of probabil®(x; ,t) super-

posed on the previous simulation data. It can be seen that s result suggests a simple but illustrative strategy to im-
many cases, there is reasonable agreement between profoye the frequency resolution of the method described
abilities and the time and location of events, although theypgye: that we add a random time increment, drawn from a
“false alarm” rate is high. uniform distribution of times about the original firing time,
to each firing time of the;(t,,). In this way, we degrade the
temporal resolution without changing the average frequency
v; or the mean firing time. We should then expect that reso-
lution of normal mode frequencies will improve. However,
Success in forecasting future events using the pattern dyas remarked above, important information will be lost about
namics method depends on the capability of accurately rethe spatial correlations of the various sites.
trieving both the eigenvectorg,(x;) and the eigenfrequen- To test this idea, we defined a set of new random time
ciesw;. For purposes of comparison, it is useful to have arseriesy; (t,,), in which the time of each firing was altered by
alternative model, which we call the “randomized model,” the addition of a random number uniformly distributed on
which illuminates trade-offs in different approaches. Thisthe interval [ —1/2v;,+ 1/2v;]. Because the randomized
new model defines the eigenfrequencies at each site mudhmes are uniformly distributed around the original firing

VIl. “RANDOMIZED MODEL” AND UNCERTAINTY
PRINCIPLE
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FIG. 7. Eigenvectorps, as in Figs. £8) and §b). Period=597 years.

times, a memory of the original firing times is retained. Wecan be seen from these figures that better frequency resolu-
then repeated the entire procedure and constructed new foréen is obtained at the cost of obtaining less knowledge about
cast probabilitiesP(x; ,t). The eigenvectors corresponding spatial correlations between sitgsandx; . It is important to

to the three largest eigenvalues are shown in Figs. 9—11. hote that this “randomized” model is not the only means of

2.300x10%
2.290x10%
2.280x10%

2.270x10%

Time (years)

-
2.260x10* e
2.250x10% £
0 500 1000 1500 2000
5 0.100
©
£ 0.099
0 500 1000 1500 2000

Distance (km)

FIG. 8. Superposition of eventsolid horizontal lines from year 22 500 to year 23 000 top with probabilitiB¢x; ,t) calculated
according to Eq(20). Light shaded regions are fé¥(x; ,t)>1/3; dark shaded regions are f8(x; ,t)>1/2. The method used was the basic
method described in Sec. V.
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FIG. 9. Eigenvectokp, for randomized model, as in Figs(a&h and 3b). Period=580 years.

trading frequency for spatial information, but has the virtuewith the actual simulation events than does a competing

of being simple and illustrative, which is what we require Poisson probability model.

here. Other methods, for example, those based on wavelets The likelihood ratio method is described in detail else-

[24] have been discussed extensively elsewhere. We discusgere[39], and only a brief summary is given here. Con-

other methods in a separate publicatj62)]. sider a given normalized probability densiB(x,t). If the
Results for the new forecast probabilities are shown inth of N fault segments slip®; times, so that there afs

Fig. 12 for the same simulation data as was used in Fig. 8. liotal events on all segments, the likelihood function is

several locations; for example, at distances ranging from 0 to

300 km, and from 500 to 1000 km, forecasts in Fig. 12 are Nt Qi
superior to those in Fig. 8. However, the likelihood ratio test inﬂl ql;[l P(Xi tq)- (23
described below indicates that the original method with non-
randomized times is more accurate overall. We wish to compare the quality of forecasts given by two
probability distributions; for example, the PD method
VIIIl. STATISTICAL TEST OF FORECAST Pep(Xt) and a reference time-independent Poisson model
PROBABILITIES P,(X). The corresponding likelihoods are designated gs

) o andLp. To compare the two probability models, we define a
The method we describe can be tested by statistical meaRgmposite likelinood ratio that involves a mixing ratio

to assess the quality of the forecast. The predictive skill of a

proposed method can be compared, for example, to a stan- Nt Qi

dard Poisson model by computing a likelihood ratio. The Lio=I1 IT P tq.r), (24)
same method has been used to evaluate other proposed fore- 1=1a=1

cast methods, including time-to-failure models, for real
earthquakeg39]. The likelihood test is based on the idea that
a cost is incurred if a forecast method produces a false alarm, P(Xi ,tq,1) =IPpp(X; ,tg) +(1=1)Pp(x;). (25)

i.e., an event during a time interval when no event occurs.

Using this test, we find that the pattern dynamiD) Equationg23)—(25) assumes that the earthquakes are all sta-
method associates significantly more probability measurdistically independent, a standard assumption that is clearly

where
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FIG. 10. Eigenvectorp, for randomized model, as in Figs(ah and 3b). Period=476 years.

not correct in the case of our simulations. However, statistibe evaluated: if an event were not predictBgp(X; t)=0
cal independence is an assumption routinely used in earthhere. Sincelpp is a product of all the probabilities
quake forecasting, a'nd the Poisson model represent's one ph(x; 1ty at the times and locations of the events,,
the current most widely used method for calculating anwould be zero, and lag{Lpg: would be undefined.

earthquake hazai®,39). _ From examination of Figs. 8 and 13, it can be seen that
_ Significance of resultsin Fig. 13, we plot the log- there exist a number of false positive space-time forecasts in
likelihood ratio log{Lr(r)}, which is defined by using the probability modePpp(X;,ty), as well as some

L) “failures to predict.” However, the resul(27) means that

r . . e
_ Ppp(x,t) still puts far more of its probability measure at the
l0g1o{LR(r)}=l0g10} —— PD
GuofLr(N)} 910{ Lp ] times of the slip events than doBs(x).

=10g;o{L(r)} —logsoL p}- (26)

Likelihoods must be interpreted only by comparing probabil-
ity models fit to exactly the same data. In Fig. 13, we show a A variety of methods have been proposed for understand-
plot of log;o{Lr(r)} against the mixing ratio, correspond- ing the space-time patterns in driven nonlinear systems in-
ing to the forecasts and simulation data in Figs. 8 and 12. I§luding principal component analysi&6,31], principal os-
both cases cillation pattern[27—29 analysis, and singular spectrum
analysig 25,32,33. However, in these systems, the variables
L(r)y>Lp, r>0, (27)  that define the underlying dynamics are directly amenable to
observation, in contrast to most driven threshold systems,
implying that Lpp>Lp. These results show that the PD such as neural systems, earthquakes, and disordered mag-
model is substantially bettér-20 in Fig. 8,~5 in Fig. 13  netic systems. In these driven threshold systems, only the
for larger) than the Poisson model at predicting the occur-associated “derivative variables,” such as the correlated fir-
rence times and locations of the synthetic events. The bestg activity or earthquakes, can be directly observed. Thus
probability models for both randomized and nonrandomizedhe standard methods cannot be applied to threshold systems
forecasts are those with the larges€ases withr =1 cannot  without serious qualifications. Other methods that are being

IX. FINAL COMMENTS
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examined elsewhere are described in R¢44-48,50,5], Understanding the patterns of firings in nonlinear thresh-

but these have so far not yielded adequate results for thresbid systems must proceed via the construction of representa-
old systems. Applications of our methods to observed seistive simulations and the development of analysis methods for
micity data taken from real fault systems will be given else-the patterns that result. Once the analysis methods are in
where[52]. place, they should be applied to forecasting and understand-
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FIG. 12. Superposition of eventsolid horizontal lines from year 22500 to year 23 000 top with probabilitie$x; ,t) calculated
according to Eq(20) using “improvements” described in Sec. VII. Light shaded regions aré>fos ,t) > 1/3; dark shaded regions are for
P(x ,t)>1/2.
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14 ——— However, it is simple to see that any two rows have the
® —— Non-random eigenfunctions . . . . .
1.2 | & = Random cigestunctions following property: either they are identical or they are dis-
Lo joint. By disjoint we mean that the nonzero elements in one
= row, say row 1, are zero in any other row that is not identical
< 0.8 to row 1. Since the numbering of the fault segments is arbi-
:10_6 trary, we can renumber so that all of the rows that are iden-
S04 tical are grouped together. This will put the matrices in
_%? ’ Jordan-normal form. That is, the matrices, both static and
0.2 rate correlation, are now made up of blocks of nonzero ele-
0.0 ments arranged along the diagonal. Each block has the same

02 nonzero element, which is simply the frequency squared of

’ 0.0 02 04 0.6 0.8 1.0 some element in the rate correlation matrix and one in the

r static matrix. Clearly, the eigenvalues of the rate matrix are

FIG. 13. Plot of log-likelihood ratio log{L(r)} against mix- the square of the frequencies times the eigenvalues of the

. ! . SRR L static matrix.
ing ratior corresponding to event forecasts in Fig$s8lid, circles - . .
and 12(dashed, triangles In the case of real data, it is certainly true that the time-

averaging period is not infinite and the number of frequen-
case that the largest correlated-firing events are the most ifg €vidence that we discussed in the body of the paper that
frequent, but the most important to understand, since thegupports the point of view that the assumptions we made are

usually act to slave the entire system. For earthquake modeld0°d approximations. It is clear that there will be modifica-

these correspond to the largest and most destructive evenfiONS that will need to be made to incorporate additional
odes and finite averaging times if we wish to forecast over

aitgliri pt?ettnetrrévaennazg/is;l é?r?y Sllotv(\)/ :ng r;?tt:;?sesgstr:?gebrong times, and that the less periodic the individual fault
q ) g up 9 ) ements are, the more important the corrections will be.
detected and recognized. If this can be demonstrated, reliable

forecasting of the largest events may be possible. APPENDIX B: EARTHQUAKE FAULT SYSTEM MODEL

ACKNOWLEDGMENTS A particularly complicated example of space-time pat-
terns in a nonlinear threshold system arises in the dynamical
The authors would like to acknowledge helpful conversamodel of the earthquake fault system described in F32fi.
tions with C. Penland, J. Hopfield, Marian Anghel, J. de san contrast to many current models in the literature describ-
Martins, J. Perez-Mercader, and Murray Gell-Mann. Weijng a single planar fault, the model in R¢84] includes all
wish to thank D. Sornette for careful and thoughtful com-of the major faults in southern California, albeit at a rela-
ments. Research by J.B.R. was supported by NASA undefvely crude scale (Fig. 2, bottom. In this cellular
Grant No. NAG5-5168simulations, and by the US DOE  automaton-type model, each &f=80 fault segments is
Grant No. DE-FG03-95ER1449@heory) to the University  driven at its own particular long-term raté of a few
of Colorado. Research by W.K. was supported by the U%entimeters/year.
DOE through Grant No. DE-FG02-95ER14498 to Boston Segment | S"ps When the Shear Stres&-sbi(t)
University. Research by K.T. was supported by NASA under— wsTnomi(t), Where ug is a preassigned coefficient of

Grant No. NGT5-30025. “static” friction, and & pom;(t) is the normal stress on the
segment. At failure, slip occurs that is sufficient to reduce
APPENDIX A: EIGENVALUES OF K(x;,%) Tani(t) to the valueog;(t) = pgomom;(t), Where uq is a

In this appendix we give an argument as to why the ei_c.oefﬁcient Qf_ “dynamic” friction. The differenc_e .in fric-
genvalues of the rate correlation matri(x;,x;) should tional coefﬁments,us'—,ud is tune<’j, so that realistic event
equal the square of the frequencies of the eigenmodes. Tﬁgquences on the middiebig bend”) and southern parts of
main assumptions we make for this illustration is that eact"® M0del San Andreas fault occur at realistic intervals of
fault segment that can fail has only one frequency, and thqj?lsc.) ye’?rs. Some funing was alsp carried out to.produce
the time averaging period can be approximated by infinity. fe?"S“C Sequences on thellmperlal, the Sar) Jacinto, the

Consider first the simple case where each fault segmer'r:tls'nore’ and Garloc_:k faults, in contrast to frictional proper-
has a different frequencys; in the Fourier domain. Refer- ties on the_Cerro Prieto and Northern San Andreas fault seg-
fing to Eq.(11), we can represent each time series as ments, wh|ch_were not tuned. Time steps of one year are

used. Interactions between segments allow stress transfer so

Z(X; ,t):Re{Z(Xj,O)ei;jt}_ (A1)  that one slipping sement can induce others to slip as well in

the same event. Realistic directionally dependent elastic and
In this case, with normalization, the static correlation matrixviscoelastic interactions are included by means of the stress
is the identity matrix. The rate correlation matrix is also di- Green’s functions. In Fig. Zoottom) we show a map view of
agonal with elements 0&:,2 Consequently, in this simple the 80 segments of the model, each of which is a vertical
case the eigenvectors of the static correlation matrix and theectangular slip surface. These segments extend to a depth of
rate correlation matrix are the same, and the eigenvalues df8 km in an elastic plate of thickness 30 km. The plate over-
the rate matrix are simply the frequencies. lies, and is in welded contact with, a Maxwell viscoelastic

In the slightly more complicated case where the frequenhalf space in which shear stress can relax via viscoelastic
cies can be the same the matrices are no longer diagondlow. The reader is referred to Rgf34] for other details.
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